

Learning Computer Programming: Start from Scratch!

Afroditi Michailidi

6th EPAL (Vocationa/Technical School) of Heraclion, Crete, Greece
amichail@sch.gr

Abstract. The Greek Technical High School

curriculum includes a senior-year course in
Computer Programming which most of the
students, with no prior schooling, confuse with
basic computer skills.

To motivate them, we used Scratch, a
programming tool that encompasses modularity,
object-oriented-programming and multi-
threading.

Student response was highly encouraging. All
were engaged in the activities and many
continued on their own.

Scratch enabled the students to focus on the
method rather than the syntax. As a result
students earned a better look and a deeper
understanding of the basics of computer
programming.

Keywords. Scratch, Computer Programming,
High School.

1. Introduction

The Greek Technical High School curriculum
includes a senior-year course in Computer
Programming. Basics are taught using “pencil-
and-paper”, thus maintaining the strict rigidity of
the discipline. Later, students get to use
pseudocode, still on paper, with no tangible
results available. As an introductory
programming language, Pascal is taught later in
the semester. None of the students have prior
computer programming schooling and most
confuse basic computer skills (e.g. surfing the
internet) with it. Most book examples involve
math equations, thus adding to the frustration -
especially of female students. Worse, the
curriculum simultaneously includes a Visual
Programming course and a Databases course in
the same year thus endlessly confusing students
between flow charts, pseudocode, Pascal, Visual
Basic, SQL etc.

To face these challenges, we used Scratch, an
application by the MIT Media Lab, available as

Free and Open Source Software. Scratch shows
the results of your code immediately. Scratch
comes in a variety of languages and has a user-
friendly intuitive interface that encourages
experimenting. Although tailored to younger
children, it is a powerful programming tool that
encompasses modularity, object oriented
programming and multi-threading. There is also
a thriving online community with the motto
“Imagine–Program–Share”.

We used Scratch to teach conditional
statements, both simple and nested. Instead of
the usual “if-then-else”, students were
encouraged to create an interactive game with
two figures chasing each other. Moving the
figures posed problems that needed solving,
including setting conditions and constraints.

In the next sections we introduce the Scratch
programming environment, describe in detail the
methodology and the working examples used and
give a discussion on the usefulness of the
approach.

2. The Scratch Project

Scratch is a fairly new educational
programming environment, publicly launched in
2007 [1]. It was created by the Lifelong
Kindergarten Research Group of the MIT Media
Lab Team in an attempt to make programming
accessible and easy to learn for everyone.

To this end the user interface is divided into
three main panes: on the left is the blocks palette,
in the middle the current sprite info and scripting
area, and on the right the stage and sprite list.

Sprites are images that can be put on the
screen. Users can draw them in a built-in version
of painter, choose from a wide variety of
supplied images or import their own. On opening
a new project a trademark friendly smiling cat is
the default sprite as seen in Fig. 1.

Scratch uses an intuitive programming block
system to help novices get a head start as also
illustrated in Fig. 1. The basic programming
blocks are organized and colour coded according
to function and much like traditional puzzle

 Afroditi Michailidi (2010). Learning Computer Programming: Start from Scratch! M. Kalogiannakis, D. Stavrou & P. Michaelidis
(Eds.) Proceedings of the 7th International Conference on Hands-on Science. 25-31 July 2010, Rethymno-Crete, pp. 231 – 234
http://www.clab.edc.uoc.gr/HSci2010

pieces have connectors that suggest how they
should be put together. The blocks are shaped in
such a way that only syntactically valid
combinations are possible.

Users “write code” simply by moving
programming blocks into the scripting area and
putting them together. They can program
different sprites by selecting them and can easily
copy “code” simply by dragging-and-dropping it
onto a different sprite.

Figure 1. Scratch programming blocks

Once a programming stack of blocks is built,

it can be executed just by double-clicking on it.
Multiple programming blocks can be built at the
same time thus providing parallel task execution.
The emphasis is on a bottom-up approach and on
iterative incremental design.

Another concept high on the minds of the
creators was collaboration and sharing. To this
end the user interface and Scratch programming
blocks have translations in over 40 languages.
This approach allows users from different
countries to build Scratch projects and then share
them, each viewing the Scratch programming
blocks in their own language. The Scratch Web
Site is widely successful with, on last count, over
a million projects uploaded from around the
world [2]. The projects published are licensed
under a Creative Commons attribution. There is
also ScratchEd, a community for educators.

3. Visual vs Structured Programming

The author teaches senior-year students who
have chosen the Technical High School
computer related specialty of System, Network
and Software Support. These students have basic
computer skills literacy and have taken basic
computer courses in their previous year, mostly
focused on digital design, hardware and
networking. As mentioned in the introduction the
senior-year curriculum includes two obligatory
programming classes “Visual Programming” and

“Structured (Procedural) Programming” in the
same year [3].

Each class has its own course material
introducing different concepts in different times.
This results in re-iteration and student confusion.
In the previous year, the teachers of both classes
in coordination tried a restructuring of the course
material so that key concepts were introduced at
the same time.

Teacher coordination even proceeded to the
extent of handing out and working with the same
set of example problems. As students get more
fluent with programming in the second semester,
they get to program the same example both in
Visual Basic and in Pascal.

This approach had mixed results. Seemingly
at first, students would benefit from two different
approaches as they can get a glimpse of the
bigger picture. Thus variables in Pascal and
variables in Visual Basic are two aspects of the
same thing. But mastering the concept of
variables alone is hard enough. With no prior
programming background the students become
confused as parallel teaching progresses on to the
syntax and program coding. This leads to general
misconceptions and common mistakes (e.g. no
end-if in Pascal as opposed to Visual Basic,
begin-end necessary for statement blocks in
Pascal but not in Visual Basic etc).

.

4. Why choose Scratch?

What students were missing despite the
teachers’ best effort was the bigger picture.
Students need to realize that both structured and
visual programming applies the same basic
programming principles. An “all programming is
equal” approach seemed fit and to that end the
common set of problems was devised.

However since the “Structured Programming”
class is the one examined nationally for
achieving University admittance, it is crucial to
follow its own strict schedule including all the
examples in the book.

These book examples are filled of math
problems (finding grade averages, summing up
salaries, calculating fares of car tolls etc). They
make interesting programming tests in the
academic sense of the word but are not nearly as
good enough in motivating teenage students to
care about the outcome of their programs.

Worse yet, trying to learn well two new
variations of the same thing is much harder than
trying to learn only one. Students were bogged

- 232 -

down by the syntax errors as they tried to switch
between two or more programming languages.

In contrast, the Scratch programming
environment highlights the bigger picture by not
focusing on syntax at all. It also makes for highly
interactive and personalized programming
examples. On top of that its build-in object
oriented programming is intuitive in a way that
Visual Basic controls and code are not. Plus it
encourages step by step programming and allows
the user to see results of their work immediately
without compiling or switching between user and
programmer interfaces..

For all the above reasons, the author decided
to use Scratch in the “Visual Programming”
class.

5. Methodology and examples used

Scratch was used to teach conditional
statements. Rather than give the same old
problem of characterizing a student based on
their grades (if grade>10 then PASS else FAIL)
students were asked to program an interactive
game with two characters: a cat-and-mouse
chase.

The students were first shown how the game
should work once all the programming had
finished. They were then asked to figure out,
write down and program the necessary
constraints for the game to work as expected.

Taking advantage of Scratch’s inherent ability
for incremental design, rather than the teacher
handing out all the constraints at the start, the
approach followed was a step by step one with
the students coming up with the necessary
conditions each time.

Students were first introduced to the Scratch
interface. After a quick tour of the controls they
were asked to decide which programming block
would move the cat to the right and test it out.
They were then asked to move the cat
continuously to the right, again choosing the
appropriate programming block.

The first constraint was set as our cat “hit the
wall” of the display and had to be made to turn
around and move in the other direction. This set
the first conditional statement (if on edge,
bounce).

Next we wanted our cat to seem like really
walking, not just moving. That led students to
discover how to switch sprite costumes.

Now was the time to bring on the second
sprite. Students were asked to place an icon of a

mouse on the screen and make it move up and
down this time.

The last crucial step was defining when the
cat catches the mouse. Students again had to
construct a conditional statement, this time using
the touching block.

Having mastered the basics, the students were
then asked to redesign their project so that the
mouse icon movement could be controlled by the
user. This led them to discover the when … key
pressed block and incorporate its implementation
in their project.

The next day the game was enhanced by
adding variables and more conditions.
Specifically the students were asked to place bits
of cheese along the screen and keep score of the
number of cheese pieces that the mouse managed
to eat (subsequently making them disappear from
the screen). As an extra penalty, if the cat catches
the mouse the score counter should be set to
zero.

6. Discussion

The above examples were taught in two
consecutive days for a total of four teaching
hours (two two-hour periods). They were taught
on two separate occasions to classrooms of 12
and 18 students respectively.

Up to that point the students had experience
in designing simple Visual Basic forms and
writing simple code on Command Buttons- e.g.
image1.Visible=False on Command1_Click().

Apart from the requirements, students were
not given specific guidelines as to which
command to use. Neither were they given a
tutorial on the use of Scratch. They were
however given ample time to experiment both
during programming and after completing their
project.

All of the students got actively involved, tried
to solve the problem given and make the game
work.

Although they had never come in contact with
Scratch before, the students all managed to
complete both the assignments. Indeed most of
them improvised and added more blocks and
more sprites.

Additions included having two cats or two
mice running in different directions; having
numerous animal sprites running up and down
the screen; upload their own photos instead of cat
and mouse; making the cat speak or the mouse
scream upon colliding; using sound effects for

- 233 -

- 234 -

the cheese-eating and mouse-catching; changing
the background.

One went as far as using wait … secs and
developed an introductory animated story which
he then proudly exhibited to the rest of the class.

None of these additions were prompted
explicitly by the teacher; the guideline given was
“seek and you shall find”.

Students of the first class told students of the
second class about these activities. As a result
the second class was expecting “that cool
definitely not VB thing”.

 About half of the students asked to have a
copy of the program for use at home and were
surprised that they had to pay no licence fee for
it. This led to a discussion on Free and Open
Source Software and its communities. They were
also all directed to the Scratch Web Site for
further reference.

Both classes wanted to do more projects in
Scratch so we dedicated an extra two-hour period
to design a game of Pong (racket moved by the
user; ball bouncing off in random direction each
time it hit the racket, score counting and end
game if ball is dropped).

7. Conclusions

Scratch definitely was a success with students
but did it enable them to better grasp the
fundamentals of programming?

Upon reverting to the usual curriculum we
continued with several if-then-else problems
with most of the students grasping the required
constraints correctly without much difficulty
(note here that they were also of interest to
students e.g. finding body mass index given
weight and height).

Although developed with a younger age
group target in mind, its inviting appearance and
its diverse possibilities made programming with
the Scratch programming environment a
compelling task for the students.

Scratch also motivated the students to think
about the steps necessary for solving a given
problem rather than worrying about fitting the
commands in the right order.

Coupled with examples suited to students’
interest and a sound pedagogical approach

Scratch can be a powerful tool when it comes to
teaching computer programming.

8. Acknowledgements

The author would like to thank the Greek
Logo Community for introducing her to the
wonderful world of Scratch.

And thanks as always go to my students who
never cease to amaze me.

9. References (and Notes)

 [1] Resnick, M., Maloney, J., Monroy-

Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B., Kafai, Y., (2009).
Scratch: Programming for All.
Communications of the ACM November
2009; 52(11): 60-67.

 [2] Scratch Web Site. http://scratch.mit.edu/
[visited 25-June-2010]

 [3] Pedagocical Institute: Information and
Communication Technology Curriculum.
http://www.pi-
schools.gr/content/index.php?lesson_id=1
[visited 25-June-2010]

http://scratch.mit.edu/
http://www.pi-schools.gr/content/index.php?lesson_id=1
http://www.pi-schools.gr/content/index.php?lesson_id=1

